Word Metric, Stationary Measure and Minkowski’s Question Mark Function

Author:

Pumerantz Uriya1

Affiliation:

1. Department of Mathematics , Tel Aviv University , Tel-Aviv , Israel

Abstract

Abstract Given a countably infinite group G acting on some space X, an increasing family of finite subsets Gn , xX and a function f over X we consider the sums Sn (f, x) = ∑ g∈Gnf(gx). The asymptotic behaviour of Sn (f, x) is a delicate problem that was studied under various settings. In the following paper we study this problem when G is a specific lattice in SL (2, ℤ ) acting on the projective line and Gn are chosen using the word metric. The asymptotic distribution is calculated and shown to be tightly connected to Minkowski’s question mark function. We proceed to show that the limit distribution is stationary with respect to a random walk on G defined by a specific measure µ. We further prove a stronger result stating that the asymptotic distribution is the limit point for any probability measure over X pushed forward by the convolution power µ∗n .

Publisher

Walter de Gruyter GmbH

Reference10 articles.

1. [1] PELEGRÍ, V.—PARADÍS, J.—BIBILONI, L.: A new light on Minkowski’s ?(x) function, J. Number Theory 73 (1998), no. 2, 212–227.

2. [2] SERIES, C.: The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80.

3. [3] BENOIST, Y.— QUINT, J.-F.: Random Walks on Reductive Groups. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] Vol. 62, Springer, Cham, 2016.

4. [4] BJORNER, A.—BRENTI, F.: Combinatorics of Coxeter Groups. In: Grad. Texts in Math. Vol. 231, Springer-Verlag, Berlin, New York, NY, 2005.

5. [5] BEARDON, A. F.: The Geometry of Discrete Groups. In: Graduate Texts in Mathematics Vol. 91, Springer-Verlag, Berlin, New York, Ny, 1st ed. 1983; Corr. 2nd printing 1995 Edition10.1007/978-1-4612-1146-4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3