Chemical resistance of NR/SBR rubber blends for surfaces corrosion protection of metallic tanks in petrochemical industries

Author:

Braihi A. J.1,Jawad A. J.1,Kadhum A. A. H.23,Aljibori H. S. S.4,Al-Amiery A. A.5

Affiliation:

1. Department of Polymer and Petrochemicals Industrials, College of Materials Engineering , University of Babylon , Babylon , Iraq

2. University of Al-Ameed , Karbala , Iraq

3. Faculty of Engineering , Universiti Kebangsaan Malaysia , Malaysia

4. Faculty of Engineering , University of Warith Anbia’a , Iraq

5. Energy and Renewable Energies Technology Center , Baghdad University of Technology , Iraq

Abstract

Abstract In this work, a series of Natural Rubber (NR)/Styrene Butadiene Rubber (SBR) blends were formulated to protect metallic petrochemical storage tanks from corrosive media. Therefore, these blends tested against a 10% HCl solution for 72 hr at room temperature. Blends series were prepared with different ratios of NR/SBR; 25/75, 30/70, 35/65, 40/60, 45/55, 50/50, and 55/45. Three types of carbon black (N-330, N-660, and N-762) were added individually to the 45/55 blend. Hardness, tensile strength, modulus, and elongation properties were tested before and after immersion in the 10% HCl attack media. All these mechanical properties decreased after immersion action accept hardness property. Up to 45 phr NR content, the hardness increased linearly independent on immersion action, but HCl immersion gives higher hardness values. Tensile strength increased up to 40 phr NR content with and without immersion and the immersion action decreased tensile values. The highest elongation value obtained with 35/65 blend with and without immersion. The 45 phr NR content gives the higher modulus, while the lowest value obtained with the 30 phhr content. For 45/55 blend, the hardness increased as the carbon black particle size decreased and immersion action gives higher hardness values. The tensile strength decreased linearly with the carbon black surface area, while with the medium surface area, the highest modulus and lowest elongation obtained.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3