An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction

Author:

Rodrigues Paulo C.12

Affiliation:

1. CAST, Faculty of Natural Sciences , University of Tampere , Finland

2. Department of Statistics , Federal University of Bahia , Salvador , Brazil

Abstract

Summary Genotype-by-environment interaction (GEI) is frequently encountered in multi-environment trials, and represents differential responses of genotypes across environments. With the development of molecular markers and mapping techniques, researchers can go one step further and analyse the whole genome to detect specific locations of genes which influence a quantitative trait such as yield. Such a location is called a quantitative trait locus (QTL), and when these QTLs have different expression across environments we talk about QTL-by-environment interaction (QEI), which is the basis of GEI. Good understanding of these interactions enables researchers to select better genotypes across different environmental conditions, and consequently to improve crops in developed and developing countries. In this paper we present an overview of statistical methods and models commonly used to detect and to understand GEI and QEI, ranging from the simple joint regression model to complex eco-physiological genotype-to-phenotype simulation models.

Publisher

Walter de Gruyter GmbH

Reference68 articles.

1. Aastveit A.H., Mejza S. (1992): A selected bibliography on statistical methods for the analysis of genotype x environment interaction. Biuletyn Oceny Odmian, 24-25: 83-97.

2. Alimi N.A., Bink M.C.A.M., Dieleman J.A., Nicolai M., Wubs M., Heuvelink E., Magan J.J., Voorrips R.E., Jansen J., Rodrigues P.C., Vercauteren A., Vuylsteke M., Song Y., Glasbey C., Barocsi A., Lefebvre V., Palloix A., van Eeuwijk F.A. (2012): Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190: 181–201.10.1007/s10681-012-0767-0

3. Arciniegas-Alarcón S., García-Peña M., Krzanowski W.J., Dias C.T.S. (2014): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction: some new aspects. Biometrical Letters 51: 75-88.10.2478/bile-2014-0006

4. Arciniegas-Alarcón S., Peña M.G., Dias C.T.S., Krzanowski W.J. (2010): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction. Biometrical Letters 47: 1-14.

5. Annicchiarico P. (2009): Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli, S., E.P., G. & Weltzien, E. (eds.) Plant breeding and farmer participation. Rome: FAO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3