Water Surface Overgrowing of the Tatra’s Lakes

Author:

Kapusta Juraj1,Hreško Juraj1,Petrovič František1,Tomko-Králo Dávid1,Gallik Jozef1

Affiliation:

1. Department of Ecology and Environmental Sciences, Faculty of Natural Sciences CPU in Nitra , Tr. A. Hlinku 1, 949 74 Nitra , Slovak Republic

Abstract

Abstract Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

Publisher

Walter de Gruyter GmbH

Subject

Ecology

Reference42 articles.

1. Adrian, R., O’Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G.A. & Winder M. (2009). Lakes as sentinels of climate change. Limnol. Oceanogr., 54(6), 2283−2297. DOI: 10.4319/lo.2009.54.6_part_2.2283.10.4319/lo.2009.54.6_part_2.2283

2. Baumgart-Kotarba, M. & Kotarba A. (2001). Deglaciation in the Sucha Woda and Pańszczyca Valleys in the Polish High Tatras. Studia Geomorphologica Carpatho-Balcanica, 35, 7−38.

3. Boltižiar, M. (2007). Štruktúra vysokohorskej krajiny Tatier. Nitra: ÚKE SAV.

4. Dąbrowska, K. & Guzik M. (Eds.) (2015). Atlas of the Tatra Mountains – Abiotic Nature. Zakopane: Wydawnictwo Tatrzańskiego Parku Narodowego.

5. Długosz, M. & Kapusta J. (2015). Debris flows. (Plate V.2). In K. Dąbrowska & M. Guzik (Eds.), Atlas of the Tatra Mountains – Abiotic Nature. Zakopane: Wydawnictwo Tatrzańskiego Parku Narodowego.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3