Application of Machine Learning in Estimating Milk Yield According to the Phenotypic and Pedigree Data of Holstein-Friesian Cattle in Serbia

Author:

Tarjan Laslo1ORCID,Šenk Ivana1ORCID,Pracner Doni2ORCID,Štrbac Ljuba3ORCID,Šaran Momčilo3ORCID,Ivković Mirko3ORCID,Dedović Nebojša3ORCID

Affiliation:

1. 1 University of Novi Sad , Faculty of Technical Sciences , Trg Dositeja Obradovića 6 , Novi Sad , Serbia

2. 2 University of Novi Sad , Faculty of Sciences , Trg Dositeja Obradovića 3 , Novi Sad , Serbia

3. 3 University of Novi Sad , Faculty of Agriculture , Trg Dositeja Obradovića 8 , Novi Sad , Serbia

Abstract

Summary This paper presents a deep neural network (DNN) approach designed to estimate the milk yield of Holstein-Friesian cattle. The DNN comprised stacked dense (fully connected) layers, each hidden layer followed by a dropout layer. Various configurations of the DNN were tested, incorporating 2 and 3 hidden layers containing 8 to 54 neurons. The experiment involved testing the DNN with different activation functions such as the sigmoid, tanh, and rectified linear unit (ReLU). The dropout rates ranging from 0 to 0.3 were employed, with the output layer using a linear activation function. The DNN models were trained using the Adam, SGD, and RMSprop optimizers, with the root mean square error serving as the loss metric. The training dataset comprised information from a unique database containing records of dairy cows in the Republic of Serbia, totaling 3,406 cows. The input parameters (a total of 27) for the DNN included breeding and milk yield data from the cow’s mother, as well as the father’s ID, whereas the output parameters (a total of 8) consisted of milk yield parameters (a total of 3) and breeding parameters of the cow (a total of 5). Training iterations were conducted using a batch size of 8 over 500, 1000, and 5000 epochs.

Publisher

Walter de Gruyter GmbH

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Reference17 articles.

1. Chafai N., Hayah I., Houaga I., Badaoui B. (2023): A review of machine learning models applied to genomic prediction in animal breeding. Frontiers in Genetics, 14: 1150596. https://doi.org/10.3389/fgene.2023.1150596

2. Chollet F. (2017): Deep Learning with Python. Manning Publications Co.

3. Dekkers J.C.M. (2004): Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82 E-Suppl: E313-328. https://doi.org/10.2527/2004.8213_supplE313x

4. FAO (2018): The state of Food and Agriculture. In: The State of the World. https://www.fao.org/3/i9549en/I9549EN.pdf

5. Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O’Connell C., Ray D.K., West P.C., Balzer C., Bennett E.M., Carpenter S.R., Hill J., Monfreda C., Polasky S., Rockström J., Sheehan J., Siebert S., Tilman D., Zaks D.P.M. (2011): Solutions for a cultivated planet. Nature, 478(7369): 337-342. https://doi.org/10.1038/nature10452

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3