Mathematical Model for Velocity Calculation of Three Types of Vehicles in the Case of Pedestrian Crash

Author:

Gëzim Hoxha1,Ahmet Shala1,Ramë Likaj1,Xhevahir Bajrami1

Affiliation:

1. University of Prishtina “Hasan Prishtina”, Faculty of Mechanical Engineering, Department of Mechatronics, Pristina, Bregu i Diellit, p.n.10000 Prishtinë , Kosovës

Abstract

Abstract This paper treats influencing factors in the determination of vehicles speed on the pedestrian crash moment according to pedestrian throw distance and formulates a mathematical model for vehicle speed determination. Vehicle speed is one of the highest causes of accidents. The mathematical model formulation (as the target of this paper) for velocity calculation, in the case of pedestrian accidents, presents great help and guidance to experts of this field when dealing with accident analysis that through accurate determination of this parameter to find other circumstances as close as possible to the technical process of pedestrian accidents. The target of this paper is to define a mathematical model formulation for vehicle velocity calculation in pedestrian crash moment depending on relevant parameters. For the purpose of model formulating, we have selected three cases of real accidents that involved vehicles (“Peugeot 307”, “VW Golf ” and “Mercedes E 220”) with different geometrical parameters of the front profile and pedestrians with different heights and weights. For regression analysis we used “R” and “SPSS” software, which enables the statistical analysis of the data and mathematical model formulation. Also, for analysis of impact of relevant factors, model formulation and model testing have used “Virtual Crash” and “PC Crash” software, which enables pedestrian-vehicle crash simulation using vehicles with real technical characteristics and various pedestrian characteristics. Inductive, comparative, and deductive methods are part of the research methods in this paper.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

Reference14 articles.

1. [1] Prof. dr. Mia Hubert, Prof. dr. Stefan Van Aelst, Linear Models Regression Analysis, Leuven, 2014 - 2015.

2. [2] G. Hoxha, R. Likaj, A. Kyçyku. Impact of angle determined by upper bumper ends and the front edge of the engine bonnet of vehicle profile in the throw distance of child. International Journal of Civil Engineering and Technology 2017 (8), No. 11, 42 - 51.

3. [3] D. Cochrane, G. H. Orcutt. Application of Least Squares Regressions to Relationships Containing Autocorrelation Error Term. Journal of American Statistical Association 1949 (44), No. 245, 32 - 61.10.1080/01621459.1949.10483290

4. [4] J. Durbin. Estimating of Parameters in Time Series Regression Models, Journal of the Royal Statistics Society 1960 (22), Ser. B, 139 - 153.10.1111/j.2517-6161.1960.tb00361.x

5. [5] G. Hoxha, A. Shala, R. Likaj. Pedestrian crash model for vehicle speed calculation at road accident. International Journal of Civil Engineering and Technology 2017 (8), No. 9, 1093 - 1099.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3