Parametric Study for Wire Cut Electrical Discharge Machining of Sintered Titanium

Author:

Dwaipayan De1,Titas Nandi1,Asish Bandyopadhyay1

Affiliation:

1. Jadavpur University , Mechanical Engineering Department , Kolkata - 700032 , India

Abstract

Abstract In 21st century, it has been observed that Wire Cut Electrical Discharge Machining (WEDM) has evolved as one of the most important non-traditional machining process. The popularity and its success lies because of its uniqueness towards producing different components which are very difficult to machine like titanium, tungsten carbide, Inconel materials etc and provides a platform in producing intricate complex shape which in many cases become impossible to machine by traditional machining methods. Pure sintered titanium bears very high specific strength, abrasion and corrosion resistances and thus machining this type of materials by conventional techniques becomes very difficult though this material finds immense applications in bio-plant and aerospace components. In the present work, WEDM on pure sintered titanium is studied. The different input parameters of WEDM like, pulse on time, pulse off time, wire tension and wire feed have been varied to investigate the output response like MRR, Surface Roughness (Ra), Kerf Width and Over Cut. A response surface methodology (4 factors 3 level) design of experiment (DOE) has been applied in this context to examine the machining ability of pure sintered titanium and results are found to be satisfactory and verified by confirmatory test. The machining parameters like pulse on time, pulse off time, wire tension and wire feed shows immense effect on the output responses and present study provide an optimal conditions of these input parameters to get the best output responses through RSM

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3