Optimization of Sluice Gate under Fatigue Life Subjected for Forced Vibration by Fluid Flow

Author:

Poornakanta Handral1,Kadam Kartik1,Pawar Darshan1,Medar Kiran1,Makandar Iliyas1,Patil Arun Y.2,Kotturshettar Basavaraj B.2

Affiliation:

1. UG Students of School of Mechanical Engineering, KLE Technological University, Vidya Nagar, Hubli-580031, Karnataka , India

2. Faculty of School of Mechanical Engineering, KLE Technological University, Vidya Nagar, Hubli-580031, Karnataka , India

Abstract

Abstract A ‘Sluice’ is a water-flow control gate works with sliding. So, it’s a mill race, flume or a penstock, channelling water towards a water mill, traditionally a wood or metal barrier sliding in grooves that are set in the sides of the waterway. They are used in wastewater treatment of plants, and control water level and flow in watermills. However, Sluices are subjected to temperature, environment that supports corrosion, impact loading and so on. Many of those equipments operate during long time in industries and reliability is one of the most important aspects of work, there arose questions of reliability on those structural elements, because the people working nearby will be in danger due to involvement of heavy loaded parts during various possible working states. Considering these factors the gates used in industries are subjected for “Fatigue Analysis”, but the normal V-channel gates which undergo corrosion, wear and continuous stress due to water flow which leads to fatigue failure, loss of material and wastage of water are still in need of this analysis. Hence there is need of an analysis to optimize the gate in terms of material, shape, and size. This paper helps to determine the fatigue strength, wear life of Sluice gate in “V-Channels”. So, by using the ANSYS Workbench software, sluice gate is analysed for fatigue life under fluid flow.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3