A Bee Colony Neuro-Fuzzy Controller to Improve Well Premixed Combustion

Author:

Debbah Abdesselam12,Kelaiaia Ridha3,Kerboua Adlen4

Affiliation:

1. 1 L2RCS Laboratory, University of Badji Mokhtar-Annaba , Annaba , Algeria

2. Department of Petrochemical engineering , University of 20 August 1955-Skikda, PB N° 26 Route Elhadaik , Skikda , , Algeria

3. 2 GMM Laboratory, Department of mechanical engineering , University of 20 August 1955-Skikda, PB N° 26 Route Elhadaik , Skikda , , Algeria

4. 3 Department of Petrochemical engineering , University of 20 August 1955-Skikda, PB N° 26 Route Elhadaik , Skikda , , Algeria

Abstract

Abstract In order to actively control combustion reaction, this study proposes an adaptive neuro-fuzzy (ANFIS) control scheme of interaction between premixed combustion reaction and acoustic flame perturbation where the flame pressure movement will be considered as model perturbation. Using the Cantera database, it is possible to investigate the mechanisms by which the combustion process interacts with acoustic, vorticity, and entropy waves. A well-stirred reactor (WSR) has been extensively used to model combustion processes in three different reaction zone regimes. We designed the control architecture to achieve an intelligent representation of the system for various operating scenarios, which was motivated by the complexity of the mathematical model that was being used. This goal is accomplished by an artificial bee colony (ABC), which uses simulated data from a mathematical model to optimize a neuro-fuzzy with less computational expense. The optimized neuro-fuzzy identifier is converted to an adaptive neural-based (ANFIS) controller optimized to control the outputs of the system. In keeping with the combustion temperature set point, the results demonstrate a remarkable attenuation of flame perturbation and acceptable combustion reaction quality (NOx emission).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Review of Metaheuristic Algorithms (MAs) for Optimal Control (OCl) Improvement;Archives of Computational Methods in Engineering;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3