Complex Evaluation of Heavy-Duty Truck Hybridization and Electrification Options

Author:

Toman Rastislav1,Adámek Mikuláš1

Affiliation:

1. Faculty of Mechanical Engineering, Czech Technical University in Prague , Department of Automotive, Combustion Engine and Railway Engineering , Technická 4, 166 07 Prague 6 , Czech Republic

Abstract

Abstract Parallel hybrid electric vehicle (HEV) powertrain topologies are easily applicable on an existing conventional powertrain, and are frequently used in passenger vehicles, with a goal to reduce the overall fleet CO2 emissions, either with mild, full, or plug-in capability. However, for the heavy-duty trucks, the powertrain electrification progresses more slowly. Therefore, the goal of this paper is to evaluate three different hybridization options, together with two electrification options, in comparison with conventional powertrain combined with 5.9 L 6-cylinder diesel internal combustion engine in a heavy-duty 7.5-ton application. All vehicle variants are evaluated in eight vehicle driving cycles replicating different heavy-duty use-cases at different cargo levels, also considering the economical aspect of these different electrification options, calculating the payback periods for each powertrain option. The energy management control strategy, that determines the power split between the ICE and electric motor for HEV variants is an optimal one, based on Pontryagin’s Minimum Principle. All models are programmed in-house in Python 3.9.0.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3