Mechanical and Abrasive Wear Properties of Friction Stir Welded Joints of Aluminum Alloy AA6061-T6 with/Without Nickel Coating

Author:

Bahuguna Shailja1,Arya Pradyumn K2,Patel Vinay Kumar1

Affiliation:

1. Department of Mechanical Engineering , Govind Ballabh Pant Institute of Engineering and Technology , Pauri-Garhwal 246001 , Uttarakhand , India

2. Department of Mechanical Engineering , Indian Institute of Technology Indore 452020 , Madhya Pradesh , India

Abstract

Abstract The purpose of this work is to examine the microstructure, mechanical and sand abrasive properties of friction stir welded joints of aluminium alloy AA6061-T6 with and without nickel coating. A total eighteen samples, six samples of AA6061-T6 plates, six samples of 10 μm thick Ni coated AA6061-T6 plates and six samples of 15 μm thick Ni coated AA6061-T6 plates were friction stir welded by using different tool rotation speed (710 rpm, 1000 rpm, 1400 rpm) and different welding speed (28 mm/min, 56 mm/min). The joints manufactured using 1400 rpm tool rotation speed and 56 mm/min welding speed generated the highest tensile strength and percent elongation with joint efficiency of 69.05% with 15 μm Ni-coated AA6061-T6 plates and joints manufactured from 10 μm Ni-coated AA6061-T6 plates using 1000 rpm tool rotation speed and 28 mm/min welding speed generated the highest impact energy and higher hardness in NZ compared to the other joints. The 15 μm Ni-coated AA6061-T6 plates exhibited better abrasive wear resistant properties than the 10 15 μm Ni-coated plates. Microstructure investigation showed the precipitate size variations and their distributions and after friction stir welding, these precipitates became slightly coarser in the HAZ but finer in the nugget region.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering

Reference27 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3