Verifying and improving map specifications of river network selection for automatic generalization of small-scale maps

Author:

Ajdacka Iga1ORCID,Karsznia Izabela1ORCID

Affiliation:

1. University of Warsaw, Faculty of Geography and Regional Studies , Department of Geoinformatics, Cartography and Remote Sensing Warsaw , Poland

Abstract

Abstract Automated generalization is highly desired for effective map production. This research focuses on the initial stage of generalization, namely object selection. The study aims to conduct river network automatic selection based on map specifications contained in the Minister of Internal Affairs and Administration regulation. The research covers river network selection from the General Geographic Objects Database from 1:250,000 to 1:500,000 detail level. Within the research scope, three selection variants were designed. The first was a basic variant that only included the implementation of the specifications contained in the regulation. The other two were experimental variants: an extended variant and an extended-modified variant with the parameters and data enrichment proposed by the authors. The extended variant has been supplemented with the Id_MPHP index usage, derived from the Map of Hydrographic Division of Poland (MPHP), which defines the hierarchy of watercourses in the river network. The extended-modified variant was implemented according to the guidelines of the regulation, with the use of the Id_MPHP index and additionally with the help of the parameter denoting “priority” watercourses, which was assigned by the authors. The results of the work constitute the generalization models designed in ArcMap 10.8. with the use of Model Builder functionality as well as the maps presenting the selection variants output visualizations. The results were compared visually as well as verified with the reference atlas map generalized by an experienced cartographer. As a result, the map specifications concerning the selection process presented in the regulation proved to be insufficient to generalize river networks properly. The variants proposed in this research made it possible to improve the selection results and enabled the automation of the river selection process. Additional specifications and parameters proposed in this work may constitute an essential supplement to the guidelines contained in the regulation.

Publisher

Walter de Gruyter GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference27 articles.

1. Brewer, C. A., Buttenfield, B. P., & Stanislawski, L. V. (2011). Choosing between Geometry Change and Display Change for Multiscale Mapping—The Role of Elimination in Design. Proceedings of the 25th International Cartographic Conference, Paris, France, 3–8 July. https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/D1-Feature%20selection%20and%20typification%20in%20generalisation/CO-310.pdf

2. Chen, J., Hu, Y., Li, Z., Zhao, R., & Meng, L. (2009). Selective omission of road features based on mesh density for automatic map generalization. International Journal of Geographical Information Science, 23(8), 1013–1032. https://doi.org/10.1080/1365881080207073010.1080/13658810802070730

3. Christensen, A. H. J. (1999). Cartographic line generalization with waterlines and medial-axes. Cartography and Geographic Information Science, 26(1), 19–32. https://doi.org/10.1559/15230409978242489310.1559/152304099782424893

4. Chrobak, T., Szombara, S., Kozioł, K., & Lupa, M. (2016). A method for assessing generalized data accuracy with linear object resolution verification. Geocarto International, 32(3), 238–256. https://doi.org/10.1080/10106049.2015.113372110.1080/10106049.2015.1133721

5. Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the Reduction of the Number of Points Required To Represent a Digitized Line or Its Caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2), 112–122. https://doi.org/10.3138/fm57-6770-u75u-772710.3138/FM57-6770-U75U-7727

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3