Ricci Solitons in β-Kenmotsu Manifolds

Author:

Kumar Rajesh1

Affiliation:

1. Department of Mathematics , Pachhunga University College , Mizoram , India

Abstract

Abstract The object of the present paper is to study Ricci soliton in β-Kenmotsu manifolds. Here it is proved that a symmetric parallel second order covariant tensor in a β-Kenmotsu manifold is a constant multiple of the metric tensor. Using this result, it is shown that if (ℒVg +2S)is ∇-parallel where V is a given vector field, then the structure (g, V, λ) yields a Ricci soliton. Further, by virtue of this result, we found the conditions of Ricci soliton in β-Kenmotsu manifold to be shrinking, steady and expending respectively. Next, Ricci soliton for 3-dimensional β-Kenmotsu manifold are discussed with an example.

Publisher

Walter de Gruyter GmbH

Reference34 articles.

1. [1] A. Futaki, H. Ono, and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom, 83/3, (2009), 585–636

2. [2] A. Ghosh, R. Sharma, and J. T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Glob. Anal. Geom., 34, (2008), 287–299

3. [3] A. M. Blaga, Eta-Ricci soliton on para-Kenmotsu manifold, Balkan Journal of Geometry and Its Applications, 20/1, (2015), 1–31

4. [4] B. Barua and U. C. De, Characterizations of a Riemannian manifold admitting Ricci solitons, Facta Universitatis(NIS)Ser. Math. Inform, 28/2, (2013), 127–132

5. [5] B. Chow, Peng Lu, and Lei Ni, Hamiltons Ricci flow, AMS Science Press, 77, (2006)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3