Temperature and Humidity Data Evaluation of Tight Sportswear during Motion Based on Intelligent Modeling

Author:

Cheng Pengpeng12,Wang Jianping134,Zeng Xianyi2,Bruniaux Pascal2,Chen Daoling5

Affiliation:

1. 1 College of Fashion and Design, Donghua University , Shanghai , China

2. 2 Centrale Lille, Ensait, Gemtex , Roubaix , France

3. 3 Key Laboratory of Clothing Design & Technology, Donghua University, Ministry of Education , Shanghai , China

4. 4 Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing , Shanghai , China

5. 5 Clothing and Design Faculty, Minjiang University , Fuzhou , China

Abstract

Abstract A neural network structure of Long Short Term Memory (LSTM) is proposed which could be used to predict the temperature and humidity of other key parts from the temperature and humidity data of some parts of the human body when wearing tight sportswear, so as to realize the temperature and humidity data prediction of all key points of the human body. The temperature and humidity of different people wearing tights were collected by DHT sensors. The experimental results show that the LSTM neural network structure proposed has higher prediction accuracy than other algorithms, and the model evaluates the feasibility of temperature and humidity data of tights in a state of motion, which facilitates the study of dynamic thermal and humid comfort and reduces the time cost of analyzing the temperature and humidity distribution and changing the law during human movement. It will effectively promote the study of temperature and humidity changes when people wear sports tights, provide theoretical reference for the study of human skin temperature in the field of sports medicine, and provide practical guidance for the application of human skin temperature changes in sports clothing production, diagnosis and prevention of sports injuries.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3