Assessment of nanomechanical properties of Candida albicans as an element of the oral mycobiota in healthy subjects – a preliminary study

Author:

Teodorowicz Patrycja1,Tokarska-Rodak Małgorzata2,Michaluk Estera1,Zarębska Marta1,Plewik Dorota2,Grudniewski Tomasz3,Sacharczuk Mariusz45

Affiliation:

1. 1 Innovation Research Centre , John Paul II University in Biała Podlaska , Sidorska 95/97, 21-500 Biala Podlaska , Poland

2. 2 Faculty of Health Sciences , John Paul II University in Biała Podlaska , Sidorska 95/97, 21-500 Biala Podlaska , Poland

3. 3 Faculty of Technical Sciences , John Paul II University in Biała Podlaska , Sidorska 95/97, 21-500 Biala Podlaska , Poland

4. 4 Department of Experimental Genomics , Institute of Animal Biotechnology and Genetics of the Polish Academy of Science , Jastrzębiec, Postepu 36A, 05-552 Magdalenka , Poland

5. 5 Department of Pharmacodynamics , Faculty of Pharmacy, Warsaw Medical University , Banacha 1, 02-697 Warsaw , Poland

Abstract

Abstract In a healthy physiological state, the mucous membrane of the oral cavity creates a suitable environment for the colonization of Candida spp. yeasts. The aim of the study was to analyze the nanomechanical properties of C. albicans cells derived from the oral cavity of healthy people in a biofilm produced in laboratory conditions. Candida spp. were sampled from the oral cavity of healthy individuals. The process of biofilm formation was analyzed using classic microscopic observation enriched with SEM (scanning electron microscope) and the nanomechanical properties of the cells were assessed with the use of the atomic force microscopy technique (AFM). From all isolated strains in the samples collected of the oral cavity healthy people was detected 79% C. albicans. Other isolated species belonged to the group „non-albicans”. The observations of C. albicans carried out in 24-h cultures revealed a tendency of the cells to form a biofilm structure with multilayer cell systems. The diameter of C. albicans cells in this structure was 5.75 µm, and the length of the pseudohyphae was 17.08 µm. The presence of an extracellular substance surrounding the C. albicans cells was detected. The mean value of the adhesion force determined for C. albicans cells was 4.01 nN. Areas with increased hardness (Force Modulation Mode signal; FMM signal) were found mainly in the zones of cells in contact with the glass substrate. The analysis of Candida cells in liquid samples gives satisfactory results, as it prevents unfavorable changes in the cell surface and thus provides more reliable results. The quality of the biofilm is probably related to the nanomechanical properties of C. albicans cells and may consequently contribute to the stability of the biofilm structures and their susceptibility or resistance to antifungal drugs. The presence of Candida spp. especially in companion animals (dogs, cats) poses a risk of their transmission to the human organism. For this reason, it is advisable to undertake additional research to analyze the ability of zoonotic-origin Candida spp. to form biofilms with comparison of the biofilm-formation capacity of species isolated from humans.

Publisher

Walter de Gruyter GmbH

Subject

General Veterinary,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3