Influence of the Electrical Test Setup on the Voltage Gain Measurement of an Unloaded Rosen-Type Piezoelectric Transformer Vibrating in the First Three Modes

Author:

Boukazouha Faiza1,Barkat Hamza2,Rouabha Abdesselam2,Herbadji Abderahim2,Rguiti Mohamed3

Affiliation:

1. Research Center in Industrial Technologies, CRTI, EChahid Mohammed ABASSI , Algiers , Algeria

2. Calibration, analysis, measurement workshop, Research Center in Industrial Technologies, CRTI, EChahid Mohammed ABASSI , Algiers , Algeria

3. Université Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS – Laboratoire de Matériaux Céramiques et de Mathématiques , Valenciennes , France

Abstract

Abstract In recent years, Piezoelectric Transformers (PTs) have become a great success due to their excellent properties, especially in applications requiring high voltage. The Rosen-type PT is well known for this performance, as its voltage gain at the resonant frequency can reach few thousands. However, the high output impedance of this device can make an accurate electrical measurement of the output voltage difficult, hence the need to ensure good impedance matching along the measuring electrical test setup. For this purpose, two high impedance oscilloscope probes were successively added to the secondary side to further emulate the measurement chain and match the experiments as closely as possible with the developed 1D model. Accordingly, for an unloaded Rosen type piezoelectric transformer, made of hard ceramic (pz26) with corresponding dimensions 2L×w×t =25 mm×3 mm×2 mm and operating in the first three modes, the corresponding input impedances Zin were evaluated at 665 Ω - 225 Ω and 1974 Ω, while the output impedances Zout were evaluated at 19.2 MΩ - 15.4 MΩ, and 1.8 MΩ. A voltage gain of 164, 179 and 23 at frequencies of 69.4 kHz, 136 kHz and 204.6 kHz, respectively was successfully measured, with a precision of less than 5%. In addition, a detailed equivalent circuit of the transformer was built and all its lumped RLC components were experimentally identified using the Nyquist diagram showing, on the whole, a well-accepted agreement with the expected results.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3