Design of Calibration System for Multi-Channel Thermostatic Metal Bath

Author:

Zhuo Hua12,Xu Yan3,Zhou Weihu4,Li Feng2,Zhao Yikun2

Affiliation:

1. Instrument Science and Technology, Department of Automation , Nanjing University of Aeronautics and Astronautics , No. 29, Jiangjun Avenue, Jiangning District, Nanjing City, 211106, Jiangsu Province , China

2. Thermal Metrology Testing Institute, Xinjiang Uygur Autonomous Region Research Institute of Measurement & Testing , Hebei Street, No.258 , , Urumqi , China

3. School of Mechanical Engineering , Xinjiang University, Xinjiang University Boduo Campus , No. 777, Huarui Street, Shuimogou District, Urumqi, Xinjiang ., , Urumqi , China

4. Institute of Microelectronics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 9 Dengzhuang South Road, Haidian District , Beijing , , China

Abstract

Abstract The use of the thermostatic metal bath is becoming more and more extensive and the requirements for its precision and reliability are also increasing. To meet the needs of the metal bath calibration, a 12-channel thermostatic metal bath temperature field calibration system based on a four-wire PT100 has been designed. The system design includes a front-end temperature measurement component, which consists of a four-wire PT100 and a thermostatic block, and a signal processing component, which consists of a bidirectional constant current source excitation unit, a signal conditioning unit and a high-precision acquisition unit. The STM32f407 is used as the main control chip, and the analog channel selector is used for 12-channel selection. The constant current source is used for signal excitation, the proportional method is used to measure the PT100 resistance, and an acquisition circuit with a high-precision 32-bit ADS1263 analog-to-digital converter is used to amplify, filter and convert the analog signal. After piecewise linear fitting and system calibration, the temperature measurement accuracy can reach 0.4 mK, which meets the calibration requirements of the thermostatic metal bath.

Publisher

Walter de Gruyter GmbH

Reference14 articles.

1. Zhang, Q., Zhou, S., Xu, H. (2018). Measurement uncertainty evaluation of temperature deviation of thermostatic metal bath. Metrology & Measurement Technique, 45 (12), 121-122. https://doi.org/10.15988/j.cnki.1004-6941.2018.12.040

2. Luo, H., Gong, W. (2020). Research on calibration method for metal bath incubator. Metrology & Measurement Technique, 47 (12), 70-72. https://doi.org/10.15988/j.cnki.1004-6941.2020.12.023

3. He, X., Zhu, T., Lv, J. (2021). Research on temperature calibration device of thermostatic metal bath. Metrology & Measurement Technique, 48 (11), 1-4. https://doi.org/10.15988/j.cnki.1004-6941.2021.11.001

4. Tao, J., Julaiti, M., Luo, H., Guo, T., Wang, P., Ren, H. (2021). Design of high precision multichannel wearable body temperature measurement system based on negative temperature coefficient. Science Technology and Engineering, 21 (14), 5733-5741.

5. Zhang, W., Yao, J., Tang, X., Chang, A. (2021). Design of high-precision temperature acquisition system with dual-ADC based on thermistor. Instrument Technique and Sensor, 9, 43-47.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3