Affiliation:
1. Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Dr. M. H. Mari Gowda Road, Bangalore - 560 029, India
Abstract
Exit Dose Measurement in Therapeutic High Energy Photon Beams and Cobalt-60 Gamma Rays
To estimate the skin dose to the patient from the treatment planning, the knowledge about exit dose is essential, which is calculated from the percentage depth dose. In this study 6 MV and 18 MV beams from linear accelerator and cobalt-60 beams were used. The ionometric measurements were carried out with parallel plate chamber of sensitive volume 0.16 cc. Parallel plate chamber was fitted in to 30 x 30 cm2 polystyrene phantom at a fixed FSD with the measuring entrance window facing farther from the source. The field size for this measuring condition was maintained at 10 x 10 cm2. The ionization measurements were also carried out by changing the thickness of the polystyrene phantom at the entrance side of the point of measurement. In order to find out the variation of relative exit dose (RED) with field size the measurements were carried out without and with the full back-scattering material (27.2 gm/cm2) placed beyond the entrance window of the chamber. The measurements were also done for the entrance polystyrene phantom thicknesses of 10, 20 and 30 cm for the field size ranging from 5 x 5 cm2 to 30 x 30 cm2. The dose at the exit surface with no backscatter material is about 4.4%, 3.7% and 5.8% less than the dose with the full backscatter material present beyond the point of measurement for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The reduction in exit dose does not depend much of the phantom thickness through which the beam traverses before exiting at the chamber side. Dose enhancements of about 1.03 times were observed for a field size of 5 x 5 cm2 for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The dose enhancement factor (DEF) values were noticed to vary with field size beyond 15 x 15 cm2 for all the energies studied. Also it can be observed that the dose enhancement factor (DEF) values do not depend on the thickness of the phantom material through which the beam has traversed. The DEF values were found to vary marginally for different phantom material thickness for the particular field size. The study indicates that a reduction of 4.4% and 3.7% in relative exit dose when there is no backscatter material present for 6 and 18 MV X-rays for most of the clinically used radiotherapy portals. The measured exit dose was found to be mostly independent of field size and the thickness of the phantom material through which the beam gets transmitted at the entrance side. An addition of backscatter material of thickness equal to two-thirds of the dmax
depth of the radiation beam concerned results in full dose at the exit side.
Subject
Radiology Nuclear Medicine and imaging,Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献