Affiliation:
1. Institute of Mathematics , Lodz University of Technology , Wolczanska 215, 90-924 Lodz , Poland .
Abstract
Abstract
Using a global inversion theorem we investigate properties of the following operator
V
(
x
)
(
⋅
)
:
=
x
Δ
(
⋅
)
+
∫
0
⋅
v
(
⋅
,
τ
,
x
,
(
τ
)
)
Δ
τ
,
x
(
0
)
=
0
,
\matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr }
in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution
x
y
∈
W
Δ
,
0
1
,
p
(
[
0
,
1
]
𝕋
,
N
)
{x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right)
to the associated integral equation
{
x
Δ
(
t
)
+
∫
0
t
v
(
t
,
τ
,
x
(
τ
)
)
Δ
τ
=
y
(
t
)
f
o
r
Δ
-
a
.
e
.
t
∈
[
0.1
]
𝕋
,
x
(
0
)
=
0
,
\left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right.
which is considered on a suitable Sobolev space.
Reference18 articles.
1. [1] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2003.
2. [2] R. P. Agarwal, V. Otero-Espinar, K. Perera, and D. R. Vivero. Basic properties of Sobolev’s spaces on time scales. Adv. Difference Equ. pages Art. ID 38121, 14, 2006.10.1155/ADE/2006/38121
3. [3] L. Berezansky, M. Migda, and E. Schmeidel. Some stability conditions for scalar Volterra difference equations. Opuscula Math., 36(4):459-470, 2016.10.7494/OpMath.2016.36.4.459
4. [4] M. Bohner and A. Peterson. Dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 2001.10.1007/978-1-4612-0201-1
5. [5] M. Bohner and A. Peterson. Advances in dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 200310.1007/978-0-8176-8230-9