Affiliation:
1. Department of Mathematics , Çukurova University , Adana , Turkey .
Abstract
Abstract
The main object of this paper is to study relative homological aspects as well as further properties of τ -closed submodules. A submodule N of a module M is said to be τ -closed (or τ -pure) provided that M/N is τ -torsion-free, where τ stands for an idempotent radical. Whereas the well-known proper class 𝒞losed (𝒫ure) of closed (pure) short exact sequences, the class τ −𝒞losed of τ -closed short exact sequences need not be a proper class. We describe the smallest proper class 〈τ − 𝒞losed〉 containing τ − 𝒞losed, through τ -closed submodules. We show that the smallest proper class 〈τ − 𝒞losed〉 is the proper classes projectively generated by the class of τ -torsion modules and coprojectively generated by the class of τ -torsion-free modules. Also, we consider the relations between the proper class 〈τ − 𝒞losed〉 and some of well-known proper classes, such as 𝒞losed, 𝒫ure.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The proper class generated by τ-supplements;Journal of Algebra and Its Applications;2024-03-02
2. On subprojectivity domains of g-semiartinian modules;Journal of Algebra and Its Applications;2020-07-04