Organic/inorganic bioactive materials part IV: In vitro assessment of bioactivity of gelatin-calcium phosphate silicate/wollastonite hybrids

Author:

Radev Lachezar1,Hristov Vladimir1,Fernandes Maria2,Salvado Isabel2

Affiliation:

1. 1Department of Chemical Technology, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria

2. 2Department of Ceramic and Glass Engineering and CICECO, University of Aveiro, 3810-193, Aveiro, Portugal

Abstract

AbstractBiohybrids consisting of gelatin (G) and calcium phosphate silicate/wollastonite (CPS/W) have not been prepared so far. In this work our results are focused on the possibility of obtaining G-CPS/W bioactive hybrids in vitro. XRD, FTIR, SEM/EDS techniques were employed to characterize the synthesized hybrid materials. FTIR shows that before immersion in 1.5 SBF the “red shift” of COO- band for pure G is observed. The presence of this bond could be attributed to the formation of COO-Ca2+ via non-biomimetic route. After immersion in 1.5 SBF, FTIR shows the presence of A- and B-type carbonate containing hydroxyapatite (A/B-CO3HA). ESD and FTIR show that small amount of calcite (CaCO3) are present after in vitro test in 1.5 SBF for 3 days. XRD reveals that CO3HA and small amounts of CaCO3 can be detected after in vitro test. SEM results obtained for immersed samples show that hydroxyapatite (HA) particles fully covered the surface of the hybrids by a layer composed of spherulites. At higher magnification, very small elongated crystallites could be observed.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3