Spatial variations in the distribution of trace ionic impurities in the water-steam cycle in a thermal power plant based on a multivariate statistical approach

Author:

Živojinović Dragana1,Rajaković-Ognjanović Vladana2,Onjia Antonije3,Rajaković Ljubinka1

Affiliation:

1. 1286Department of Analytical Chemistry and Quality Control, Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia

2. 2286Faculty of Civil Engineering, University of Belgrade, 11000, Belgrade, Serbia

3. 3286Vinča Institute of Nuclear Sciences, University of Belgrade, 11001, Belgrade, Serbia

Abstract

AbstractAbstract In this study, a multivariate statistical approach was used to identify the key variables responsible for process water quality in a power plant. The ion species that could cause corrosion in one of the major thermal power plants (TPP) in Serbia were monitored. A suppressed ion chromatographic (IC) method for the determination of the target anions and cations at trace levels was applied. In addition, some metals important for corrosion, i.e., copper and iron, were also analysed by the graphite furnace atomic absorption spectrophotometric (GFAAS) method. The control parameters, i.e., pH, dissolved oxygen and silica, were measured on-line. The analysis of a series of representative samples from the TPP Nikola Tesla, collected in different plant operation modes, was performed. Every day laboratory and on-line analysis provides a large number of data in relation to the quality of water in the water-steam cycle (WSC) which should be evaluated and processed. The goal of this investigation was to apply multivariate statistical techniques and choose the most applicable technique for this case. Factor analysis (FA), especially principal component analysis (PCA) and cluster analysis (CA) were investigated. These methods were applied for the evaluation of the spatial/temporal variations of process water and for the estimation of 13 quality parameters which were monitored at 11 locations in the WSC in different working conditions during a twelve month period. It was concluded that PCA was the most useful method for identifying functional relations between the elements. After data reduction, four main factors controlling the variability were identified. Hierarchical cluster analysis (HCA) was applied for sample differentiation according to the sample location and working mode of the TPP. On the basis of this research, the new design of an optimal monitoring strategy for future analysis was proposed with a reduced number of measured parameters and with reduced frequency of their measurements. Graphical abstract

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3