Alkaline hydrolysis of brilliant green in mixed cationic surfactant systems

Author:

Olanrewaju Owoyomi1,Ige Jide1,Omopariola Soriyan1

Affiliation:

1. 1Department of Chemistry, Faculty of Science Obafemi Awolowo University, Ile Ife, 220005, Nigeria

Abstract

AbstractKinetic measurements were performed for the alkaline hydrolysis of brilliant green — a triphenylmethane dye used as a model compound for probing micellar rate effects. This reaction was studied both in the presence of tetradecyltrimethylammonium bromide (TTAB) and tetradecyltriphenylphosphonium bromide (TTPPBr) and also in binary mixtures of these surfactants at different mole fractions of each. All rate surfactant profiles were analyzed using the pseudo-phase model in order to obtain the regression parameters, including binding constants and rate constants in the micellar pseudo-phase. The reaction was catalyzed by both surfactants. The catalytic factor increases from about 10 for pure TTPPBr to about 38 for pure TTAB. Binding of BG to micellar surface is greater in pure TTAB than in pure TTPPBr but significantly reduced in the surfactant mixtures than in pure components. Reduction of the binding constant becomes more significant as the mole fraction of TTAB is increased in the mixture. The kinetic data have been analyzed in terms of models of Piszkiewicz and Raghavan-Srinivasan which are in good agreement.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference33 articles.

1. http dx org;Piszkiewicz;Amer Chem Soc,1977

2. http dx org;Fernandez;J Chem Kinet,2003

3. http dx org;Hall;Food Chem Toxic,1998

4. http dx org;Bacaloglu;Phys Chem,1990

5. http dx org;Duxbury;Chem Rev,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3