Determination of cobalt in water samples by atomic absorption spectrometry after pre-concentration with a simple ionic liquid-based dispersive liquid-liquid micro-extraction methodology

Author:

Abdolmohammad-Zadeh Hossein1,Ebrahimzadeh Elnaz1

Affiliation:

1. 1Department of Chemistry, Faculty of Sciences, Azarbaijan University of Tarbiat Moallem, P.O. Box 53714-161, Tabriz, Iran

Abstract

AbstractA rapid dispersive liquid-liquid micro-extraction (DLLME) methodology based on the application of 1-hexylpyridinium hexafluorophosphate [C6py][PF6] ionic liquid (IL) as an extractant solvent was applied for the pre-concentration of trace levels of cobalt prior to determination by flame atomic absorption spectrometry (FAAS). 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) was employed as a chelator forming a Co-PMBP complex to extract cobalt ions from aqueous solution into the fine droplets of [C6py][PF6]. Some effective factors that influence the micro-extraction efficiency include the pH, the PMBP concentration, the amount of ionic liquid, the ionic strength, the temperature and the centrifugation time which were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enrichment factor were 0.70 µg L−1 and 60, respectively. The relative standard deviation (RSD) for six replicate determinations of 50 µg L−1 Co was 2.36%. The calibration graph using the pre-concentration system was linear at levels 2–166 µg L−1 with a correlation coefficient of 0.9982. The applicability of the proposed method was evaluated by the determination of trace amounts of cobalt in several water samples.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference49 articles.

1. http dx org;Wei;Anal Chim Acta,2003

2. http dx org;Gharehbaghi;Environ Anal Chem,2008

3. http dx org;Anthemidis;Talanta,2009

4. http dx org;Li;Anal Chim Acta,2006

5. http dx org;Yang;Talanta,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3