Simulating pollutant transport over complex terrain: the hydrological component

Author:

Mita Constantina,Catsaros Nicolaos1

Affiliation:

1. 1National Centre for Scientific Research “Demokritos”, 15310, Aghia Paraskevi, Greece

Abstract

AbstractThe accurate determination of surface water flow pathways is of primary importance when assessing the impact of pollutant transport and watershed physical characteristics on overland and channel water quality. The mathematical description of hydrological processes over natural watersheds, requires a detailed representation of the topography, on which the accurate determination of overland and channel flow trajectories often poses difficulties. The hydrological component of the DELTA code aims to provide valuable insight into this direction by using the semi-irregular triangulated (semi-TIN) topography model DELTA/HYDRO for establishing surface flow paths that can represent reliably the natural characteristics of a watershed, addressing several major physical hydrodynamic processes. The validity of the generated paths is tested via the integration of a conventional distributed hydrological model by routing excess rainfall over ground surface and through a channel network to the watershed outlet, for a series of storm episodes on a small, but relatively complex watershed. The encouraging results obtained demonstrate the promising application potential of the model, which can be additionally complemented with a pollutant transport component to address the interactions of soluble chemicals between soil surface and overland/channel flow, in the context of a fully integrated model.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference54 articles.

1. http dx org;Mein;Water Resour Res,1973

2. http dx org;Ivanov;Water Resour Res,2004

3. http dx org;Mwendera;Geoderma,1992

4. http dx org;Haverkamp;Water Resour Res,1979

5. http dx org;Wesley;Water Resour Bull,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3