TiO2-assisted photodegradation of pharmaceuticals — a review

Author:

Tong Alfred,Braund Rhiannon1,Warren David2,Peake Barrie2

Affiliation:

1. 2New Zealand National School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand

2. 1Chemistry Department, University of Otago, Dunedin, 9054, New Zealand

Abstract

AbstractPharmaceutical compounds have been detected in the environment and potentially arise from the discharge of excreted and improperly disposed medication from sewage treatment facilities. In order to minimize environmental exposure of pharmaceutical residues, a potential technique to remove pharmaceuticals from water is the use of an advanced oxidation process (AOP) involving titanium dioxide (TiO2) photocatalysis. To evaluate the extent UV/TiO2 processes have been studied for pharmaceutical degradation, a literature search using the keywords ‘titanium dioxide’, ‘photocatalysis’, ‘advanced oxidation processes’, ‘pharmaceuticals’ and ‘degradation’ were used in the ISI Web of Knowledge TM, Scopus TM and ScienceDirect TM databases up to and including articles published on 23 November 2011. The degradation rates of pharmaceuticals under UV/TiO2 treatment were dependent on type and amount of TiO2 loading, pharmaceutical concentration, the presence of electron acceptors and pH. Complete mineralization under particular experimental conditions were reported for some pharmaceuticals; however, some experiments reported evolution of toxic intermediates during the photocatalytic process. It is concluded that the UV/TiO2 system is potentially a feasible wastewater treatment process, but careful consideration of the treatment time, the loading and the type of TiO2 (doped vs. undoped) used for a particular pharmaceutical is necessary for a successful application (198 words).

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference158 articles.

1. http dx org;Giraldo;Water Research,2010

2. http dx org;Klamerth;Catalysis Today,2009

3. http dx org;Molinari;Catalysis Today,2006

4. http dx org;Keane;Catalysis Letters,2010

5. http dx org;Michael;Water Research,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3