The classification of solvents based on solvatochromic characteristics: the choice of optimal parameters for artificial neural networks

Author:

Pushkarova Yaroslava1,Kholin Yuriy1

Affiliation:

1. 1Materials Chemistry Department, V.N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine

Abstract

AbstractThe Taft-Kamlet-Abboud hydrogen-bond acidity, hydrogen-bond basicity and polarity-polarizability are widely used as empirical characteristics of solvent-solute interactions. These solvatochromic parameters are determined from the absorption band positions of solvatochromic probes in the standard medium and in the medium under study. The practice of solvatochromic probing is growing rapidly, and the values of solvatochromic parameters are refined from time to time. As these values are rather close for many media, the classification of media based on these values can be tedious. This increases the choice of algorithms that can be employed in order to decrease the ambiguity of classification. The classification algorithms stable to small variations of solvatochromic parameters are of special interest. The artificial neural networks (ANN) proved to be a powerful tool for the supervised classification. The paper focuses on the search of optimal parameters of probabilistic, dynamic, Elman, feed-forward, and cascade ANN for the classification of solvent on the basis of their solvatochromic characteristics. Also, the influence of data variation on the stability of classification is examined. The dynamic and probabilistic neural networks have been found to be error-free and stable; they have significantly become such a common tool for supervised classification as linear discriminant analysis.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference52 articles.

1. http dx org;Salari;Solution Chem,2010

2. http dx org;Krogh;Biotechnol,2008

3. http dx org;Xu;J Pharm,2007

4. http dx org;Fidale;Cellulose,2010

5. http dx org;Balabin;Neural Comput Appl,2009

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ПРОГНОЗУВАННЯ СТУПЕНЯ НЕБЕЗПЕЧНОСТІ/РИЗИКУ ЗАЛИШКОВИХ РОЗЧИННИКІВ У ЛІКАРСЬКИХ ЗАСОБАХ МЕТОДАМИ ХЕМОМЕТРІЇ;Фармацевтичний часопис;2023-09-30

2. Classification of Residual Solvents by Risk Assessment Using Chemometric Methods;2023 13th International Conference on Advanced Computer Information Technologies (ACIT);2023-09-21

3. A New Procedure for Unsupervised Clustering Based on Combination of Artificial Neural Networks;European Journal of Artificial Intelligence and Machine Learning;2023-09-18

4. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR SOLVING PHARMACEUTICAL ISSUES;Grail of Science;2023-03-01

5. Prediction of Toxicity of Phenols Using Artificial Neural Networks;2022 12th International Conference on Advanced Computer Information Technologies (ACIT);2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3