Relationship between the content of chlorinated hydrocarbons and fatty acid composition of milk fat

Author:

Pietrzak-Fiećko Renata1

Affiliation:

1. Department of Commodities and Food Analysis , University of Warmia and Mazury in Olsztyn , 10-719 Olsztyn , Poland

Abstract

Abstract Introduction Reports that the presence of persistent organic pollutants in fat may affect fatty acid metabolism prompted this research aiming to study the relationship between the contents of γ-HCH and DDT, DDE, DDD, and ΣDDT, and fatty acid composition of milk fat. Material and Methods The material consisted of 50 samples of cow and mare milk, collected in 2015. Ludwicki’s and the Röse-Gottlieb and IDF Standard methods were used to prepare the samples. Statistical analyses were conducted using Statistica 12.0. Results There was a negative correlation between the content of γ-HCH and C16:1, C17:1, C18:1c9, C18:1c9c12, and ΣMUFA in cow milk fat and C13:0, C14:0, and C10:1 in mare milk fat. A positive correlation was observed between γ-HCH and C6:0 to C12:0, C14:0, C18:1t16, and ΣSFA in cow milk fat, and between this compound and C14:0iso, C16:1, C17:1, C18:1c9,11, and ΣMUFA in mare milk fat. A negative correlation between the contents of ΣDDT and C16:1, C17:1, C18:1c9,11,13 and ΣMUFA in cow milk fat and C16:0iso, C17:0, and C18:3 in mare milk fat was noted. A positive correlation was found between the contents of ΣDDT and saturated and polyunsaturated fatty acids and ΣSFA and ΣPUFA in cow milk fat, and C18:2c9c12 in mare milk fat. Conclusion The correlation between the content of selected organochlorine compounds and the composition of fatty acids in cow and mare milk fat indicates the strong influence of these environmental pollutants on the nutritional value of milk fat.

Publisher

Walter de Gruyter GmbH

Subject

General Veterinary

Reference31 articles.

1. Arzuaga X., Ren N., Stromberg A., Blanck E.P., Arsenescu V., Cassis L.A., Majkova Z., Toborek M., Hennig B.: Induction of gene pattern changes associated with dysfunctional lipid metabolism induced by dietary fat and exposure to a persistent organic pollutant. Toxicol Lett 2009, 189, 96–101.

2. Barłowska J., Litwińczuk Z.: Nutritional and health benefits of milk fat. Med Weter 2009, 65, 171–174.

3. Commission Regulation (EC) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III, and IV setting maximum residue levels for products covered by Annex I thereto. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0149&from=EN.

4. Commission Regulation (EU) 2017/ 978 of 9 June 2017 amending Annexes II, III, and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for fluopyram; hexachlorocyclohexane (HCH) alpha isomer; hexachlorocyclohexane (HCH) beta isomer; hexachlorocyclohexane (HCH) sum of isomers, except the gamma isomer; lindane (hexachlorocyclohexane (HCH) gamma isomer); nicotine, and profenofos in or on certain products. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0978&from=EN

5. Eriksson P., Jakobsson E., Fredriksson A.: Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Persp 2001, 109, 903–908.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3