Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models

Author:

Hilprecht Benjamin1,Härterich Martin2,Bernau Daniel2

Affiliation:

1. TU Darmstadt , Darmstadt , Germany

2. SAP SE , Karlsruhe , Germany

Abstract

Abstract We present two information leakage attacks that outperform previous work on membership inference against generative models. The first attack allows membership inference without assumptions on the type of the generative model. Contrary to previous evaluation metrics for generative models, like Kernel Density Estimation, it only considers samples of the model which are close to training data records. The second attack specifically targets Variational Autoencoders, achieving high membership inference accuracy. Furthermore, previous work mostly considers membership inference adversaries who perform single record membership inference. We argue for considering regulatory actors who perform set membership inference to identify the use of specific datasets for training. The attacks are evaluated on two generative model architectures, Generative Adversarial Networks (GANs) and Variational Autoen-coders (VAEs), trained on standard image datasets. Our results show that the two attacks yield success rates superior to previous work on most data sets while at the same time having only very mild assumptions. We envision the two attacks in combination with the membership inference attack type formalization as especially useful. For example, to enforce data privacy standards and automatically assessing model quality in machine learning as a service setups. In practice, our work motivates the use of GANs since they prove less vulnerable against information leakage attacks while producing detailed samples.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference30 articles.

1. [1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale machine learning. In Proc. of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI), pages 265–283, Berkeley, CA, USA, 2016. USENIX Assoc.

2. [2] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative adversarial nets (gans). In International Conference on Machine Learning, pages 224–232, 2017.

3. [3] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

4. [4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886–893, Piscataway, NJ, USA, 2005. IEEE.

5. [5] C. Donahue, J. McAuley, and M. Puckette. Synthesizing audio with generative adversarial networks. arXiv preprint arXiv:1802.04208, 2018.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fingerprint membership and identity inference against generative adversarial networks;Pattern Recognition Letters;2024-09

2. A survey on membership inference attacks and defenses in machine learning;Journal of Information and Intelligence;2024-09

3. Dual defense: Combining preemptive exclusion of members and knowledge distillation to mitigate membership inference attacks;Journal of Information and Intelligence;2024-06

4. SoK: Privacy-Preserving Data Synthesis;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

5. Traces of Memorisation in Large Language Models for Code;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3