SGX-MR: Regulating Dataflows for Protecting Access Patterns of Data-Intensive SGX Applications

Author:

Alam A K M Mubashwir1,Sharma Sagar2,Chen Keke1

Affiliation:

1. Marquette University

2. HP Inc.

Abstract

Abstract Intel SGX has been a popular trusted execution environment (TEE) for protecting the integrity and confidentiality of applications running on untrusted platforms such as cloud. However, the access patterns of SGX-based programs can still be observed by adversaries, which may leak important information for successful attacks. Researchers have been experimenting with Oblivious RAM (ORAM) to address the privacy of access patterns. ORAM is a powerful low-level primitive that provides application-agnostic protection for any I/O operations, however, at a high cost. We find that some application-specific access patterns, such as sequential block I/O, do not provide additional information to adversaries. Others, such as sorting, can be replaced with specific oblivious algorithms that are more efficient than ORAM. The challenge is that developers may need to look into all the details of application-specific access patterns to design suitable solutions, which is time-consuming and error-prone. In this paper, we present the lightweight SGX based MapReduce (SGX-MR) approach that regulates the dataflow of data-intensive SGX applications for easier application-level access-pattern analysis and protection. It uses the MapReduce framework to cover a large class of data-intensive applications, and the entire framework can be implemented with a small memory footprint. With this framework, we have examined the stages of data processing, identified the access patterns that need protection, and designed corresponding efficient protection methods. Our experiments show that SGX-MR based applications are much more efficient than the ORAM-based implementations.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3