SoK: Plausibly Deniable Storage

Author:

Chen Chen1,Liang Xiao1,Carbunar Bogdan2,Sion Radu1

Affiliation:

1. Stony Brook University

2. FIU

Abstract

Abstract Data privacy is critical in instilling trust and empowering the societal pacts of modern technology-driven democracies. Unfortunately it is under continuous attack by overreaching or outright oppressive governments, including some of the world’s oldest democracies. Increasingly-intrusive anti-encryption laws severely limit the ability of standard encryption to protect privacy. New defense mechanisms are needed. Plausible deniability (PD) is a powerful property, enabling users to hide the existence of sensitive information in a system under direct inspection by adversaries. Popular encrypted storage systems such as TrueCrypt and other research efforts have attempted to also provide plausible deniability. Unfortunately, these efforts have often operated under less well-defined assumptions and adversarial models. Careful analyses often uncover not only high overheads but also outright security compromise. Further, our understanding of adversaries, the underlying storage technologies, as well as the available plausible deniable solutions have evolved dramatically in the past two decades. The main goal of this work is to systematize this knowledge. It aims to: (1) identify key PD properties, requirements and approaches; (2) present a direly-needed unified framework for evaluating security and performance; (3) explore the challenges arising from the critical interplay between PD and modern system layered stacks; (4) propose a new “trace-oriented” PD paradigm, able to decouple security guarantees from the underlying systems and thus ensure a higher level of flexibility and security independent of the technology stack. This work is meant also as a trusted guide for system and security practitioners around the major challenges in understanding, designing and implementing plausible deniability into new or existing systems.

Publisher

Privacy Enhancing Technologies Symposium Advisory Board

Subject

General Medicine

Reference51 articles.

1. [1] A robust flash file system since 2002. “https://yaffs.net/”.

2. [2] TrueCrypt. “http://truecrypt.sourceforge.net/”.

3. [3] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file system. In Information Hiding, pages 73–82. Springer, 1998.10.1007/3-540-49380-8_6

4. [4] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward robust hidden volumes using write-only oblivious ram. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages 203–214. ACM, 2014.

5. [5] Elette Boyle and Moni Naor. Is there an oblivious ram lower bound? In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages 357–368, 2016.10.1145/2840728.2840761

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3