Reducing Metadata Leakage from Encrypted Files and Communication with PURBs

Author:

Nikitin Kirill1,Barman Ludovic1,Lueks Wouter1,Underwood Matthew,Hubaux Jean-Pierre1,Ford Bryan1

Affiliation:

1. EPFL

Abstract

Abstract Most encrypted data formats leak metadata via their plaintext headers, such as format version, encryption schemes used, number of recipients who can decrypt the data, and even the recipients’ identities. This leakage can pose security and privacy risks to users, e.g., by revealing the full membership of a group of collaborators from a single encrypted e-mail, or by enabling an eavesdropper to fingerprint the precise encryption software version and configuration the sender used. We propose that future encrypted data formats improve security and privacy hygiene by producing Padded Uniform Random Blobs or PURBs: ciphertexts indistinguishable from random bit strings to anyone without a decryption key. A PURB’s content leaks nothing at all, even the application that created it, and is padded such that even its length leaks as little as possible. Encoding and decoding ciphertexts with no cleartext markers presents efficiency challenges, however. We present cryptographically agile encodings enabling legitimate recipients to decrypt a PURB efficiently, even when encrypted for any number of recipients’ public keys and/or passwords, and when these public keys are from different cryptographic suites. PURBs employ Padmé, a novel padding scheme that limits information leakage via ciphertexts of maximum length M to a practical optimum of O(log log M) bits, comparable to padding to a power of two, but with lower overhead of at most 12% and decreasing with larger payloads.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimally Hiding Object Sizes with Constrained Padding;2023 IEEE 36th Computer Security Foundations Symposium (CSF);2023-07

2. Flash Freezing Flash Boys: Countering Blockchain Front-Running;2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW);2022-07

3. Federated Learning Framework with Straggling Mitigation and Privacy-Awareness for AI-based Mobile Application Services;IEEE Transactions on Mobile Computing;2022

4. The Computer for the 21st Century – Second Edition for Europe;Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems;2021-05-08

5. SoK;Proceedings of the 15th International Conference on Availability, Reliability and Security;2020-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3