Fortified Multi-Party Computation: Taking Advantage of Simple Secure Hardware Modules

Author:

Broadnax Brandon,Koch Alexander1,Mechler Jeremias1,Müller Tobias,Müller-Quade Jörn1,Nagel Matthias

Affiliation:

1. Competence Center for Applied Security Technology (KASTEL), Karlsruhe Institute of Technology (KIT)

Abstract

Abstract In practice, there are numerous settings where mutually distrusting parties need to perform distributed computations on their private inputs. For instance, participants in a first-price sealed-bid online auction do not want their bids to be disclosed. This problem can be addressed using secure multi-party computation (MPC), where parties can evaluate a publicly known function on their private inputs by executing a specific protocol that only reveals the correct output, but nothing else about the private inputs. Such distributed computations performed over the Internet are susceptible to remote hacks that may take place during the computation. As a consequence, sensitive data such as private bids may leak. All existing MPC protocols do not provide any protection against the consequences of such remote hacks. We present the first MPC protocols that protect the remotely hacked parties’ inputs and outputs from leaking. More specifically, unless the remote hack takes place before the party received its input or all parties are corrupted, a hacker is unable to learn the parties’ inputs and outputs, and is also unable to modify them. We achieve these strong (privacy) guarantees by utilizing the fact that in practice parties may not be susceptible to remote attacks at every point in time, but only while they are online, i.e. able to receive messages. To this end, we model communication via explicit channels. In particular, we introduce channels with an airgap switch (disconnect-able by the party in control of the switch), and unidirectional data diodes. These channels and their isolation properties, together with very few, similarly simple and plausibly remotely unhackable hardware modules serve as the main ingredient for attaining such strong security guarantees. In order to formalize these strong guarantees, we propose the UC with Fortified Security (UC#) framework, a variant of the Universal Composability (UC) framework.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Landscape of Security from Physical Assumptions;2021 IEEE Information Theory Workshop (ITW);2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3