Less is More: A privacy-respecting Android malware classifier using federated learning

Author:

Gálvez Rafa1,Moonsamy Veelasha2,Diaz Claudia1

Affiliation:

1. imec-COSIC KU Leuven

2. Ruhr University Bochum

Abstract

Abstract In this paper we present LiM (‘Less is More’), a malware classification framework that leverages Federated Learning to detect and classify malicious apps in a privacy-respecting manner. Information about newly installed apps is kept locally on users’ devices, so that the provider cannot infer which apps were installed by users. At the same time, input from all users is taken into account in the federated learning process and they all benefit from better classification performance. A key challenge of this setting is that users do not have access to the ground truth (i.e. they cannot correctly identify whether an app is malicious). To tackle this, LiM uses a safe semi-supervised ensemble that maximizes classification accuracy with respect to a baseline classifier trained by the service provider (i.e. the cloud). We implement LiM and show that the cloud server has F1 score of 95%, while clients have perfect recall with only 1 false positive in > 100 apps, using a dataset of 25K clean apps and 25K malicious apps, 200 users and 50 rounds of federation. Furthermore, we conduct a security analysis and demonstrate that LiM is robust against both poisoning attacks by adversaries who control half of the clients, and inference attacks performed by an honest-but-curious cloud server. Further experiments with Ma-MaDroid’s dataset confirm resistance against poisoning attacks and a performance improvement due to the federation.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3