Automatic Discovery of Privacy–Utility Pareto Fronts

Author:

Avent Brendan1,González Javier2,Diethe Tom3,Paleyes Andrei4,Balle Borja5

Affiliation:

1. University of Southern California†

2. Now at Microsoft Research†

3. Amazon Research Cambridge

4. Now at University of Cambridge†

5. Now at DeepMind†

Abstract

Abstract Differential privacy is a mathematical framework for privacy-preserving data analysis. Changing the hyperparameters of a differentially private algorithm allows one to trade off privacy and utility in a principled way. Quantifying this trade-off in advance is essential to decision-makers tasked with deciding how much privacy can be provided in a particular application while maintaining acceptable utility. Analytical utility guarantees offer a rigorous tool to reason about this tradeoff, but are generally only available for relatively simple problems. For more complex tasks, such as training neural networks under differential privacy, the utility achieved by a given algorithm can only be measured empirically. This paper presents a Bayesian optimization methodology for efficiently characterizing the privacy– utility trade-off of any differentially private algorithm using only empirical measurements of its utility. The versatility of our method is illustrated on a number of machine learning tasks involving multiple models, optimizers, and datasets.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference50 articles.

1. [1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 308–318. ACM, 2016.

2. [2] John M. Abowd. Disclosure avoidance for block level data and protection of confidentiality in public tabulations. Census Scientific Advisory Committee (Fall Meeting), 2018.

3. [3] John M Abowd and Ian M Schmutte. An economic analysis of privacy protection and statistical accuracy as social choices. American Economic Review, pages 171–202, 2019.

4. [4] Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning, 4(3):195–266, March 2012.

5. [5] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm design, online learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 603–614. IEEE, 2018.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3