Affiliation:
1. University of Southern California†
2. Now at Microsoft Research†
3. Amazon Research Cambridge
4. Now at University of Cambridge†
5. Now at DeepMind†
Abstract
Abstract
Differential privacy is a mathematical framework for privacy-preserving data analysis. Changing the hyperparameters of a differentially private algorithm allows one to trade off privacy and utility in a principled way. Quantifying this trade-off in advance is essential to decision-makers tasked with deciding how much privacy can be provided in a particular application while maintaining acceptable utility. Analytical utility guarantees offer a rigorous tool to reason about this tradeoff, but are generally only available for relatively simple problems. For more complex tasks, such as training neural networks under differential privacy, the utility achieved by a given algorithm can only be measured empirically. This paper presents a Bayesian optimization methodology for efficiently characterizing the privacy– utility trade-off of any differentially private algorithm using only empirical measurements of its utility. The versatility of our method is illustrated on a number of machine learning tasks involving multiple models, optimizers, and datasets.
Reference50 articles.
1. [1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 308–318. ACM, 2016.
2. [2] John M. Abowd. Disclosure avoidance for block level data and protection of confidentiality in public tabulations. Census Scientific Advisory Committee (Fall Meeting), 2018.
3. [3] John M Abowd and Ian M Schmutte. An economic analysis of privacy protection and statistical accuracy as social choices. American Economic Review, pages 171–202, 2019.
4. [4] Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning, 4(3):195–266, March 2012.
5. [5] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm design, online learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 603–614. IEEE, 2018.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献