Masking Feedforward Neural Networks Against Power Analysis Attacks

Author:

Athanasiou Konstantinos1,Wahl Thomas1,Ding A. Adam1,Fei Yunsi1

Affiliation:

1. Northeastern University , Boston , MA

Abstract

Abstract Recent advances in machine learning have enabled Neural Network (NN) inference directly on constrained embedded devices. This local approach enhances the privacy of user data, as the inputs to the NN inference are not shared with third-party cloud providers over a communication network. At the same time, however, performing local NN inference on embedded devices opens up the possibility of Power Analysis attacks, which have recently been shown to be effective in recovering NN parameters, as well as their activations and structure. Knowledge of these NN characteristics constitutes a privacy threat, as it enables highly effective Membership Inference and Model Inversion attacks, which can recover information about the sensitive data that the NN model was trained on. In this paper we address the problem of securing sensitive NN inference parameters against Power Analysis attacks. Our approach employs masking, a countermeasure well-studied in the context of cryptographic algorithms. We design a set of gadgets, i.e., masked operations, tailored to NN inference. We prove our proposed gadgets secure against power attacks and show, both formally and experimentally, that they are composable, resulting in secure NN inference. We further propose optimizations that exploit intrinsic characteristics of NN inference to reduce the masking’s runtime and randomness requirements. We empirically evaluate the performance of our constructions, showing them to incur a slowdown by a factor of about 2–5.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Masked Hardware Accelerator for Feed-Forward Neural Networks With Fixed-Point Arithmetic;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-02

2. A Full-Stack Approach for Side-Channel Secure ML Hardware;2023 IEEE International Test Conference (ITC);2023-10-07

3. High-fidelity flow field reconstruction model for incompressible fluid with physical constraints;Ocean Engineering;2023-07

4. Hardware-Software Co-design for Side-Channel Protected Neural Network Inference;2023 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2023-05-01

5. On (in)Security of Edge-based Machine Learning Against Electromagnetic Side-channels;2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI);2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3