Differentially-Private Multi-Party Sketching for Large-Scale Statistics

Author:

Choi Seung Geol1,Dachman-soled Dana2,Kulkarni Mukul3,Yerukhimovich Arkady4

Affiliation:

1. United States Naval Academy .

2. University of Maryland , Colleage Park .

3. University of Massachusetts Amherst .

4. George Washington University .

Abstract

Abstract We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the case of sketching algorithms running in time sub-linear of the input size. We begin with the well-known LogLog sketch for computing the number of unique elements in a data stream. We show that this algorithm already achieves differential privacy (even without adding any noise) when computed using a private hash function by a trusted curator. Next, we show how to eliminate this requirement of a private hash function by injecting a small amount of noise, allowing us to instantiate an efficient LogLog protocol for the multi-party setting. To demonstrate the practicality of this approach, we run extensive experimentation on multiple data sets, including the publicly available IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-offs among efficiency, privacy and accuracy of our implementation for varying numbers of parties and input sizes. Finally, we generalize our approach for the LogLog sketch and obtain a general framework for constructing multi-party differentially private protocols for several other sketching algorithms.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Streaming Data Collection With a Private Sketch-Based Protocol;IEEE Internet of Things Journal;2024-08-01

2. Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

3. Differentially Private Vertical Federated Clustering;Proceedings of the VLDB Endowment;2023-02

4. Efficient and Secure Quantile Aggregation of Private Data Streams;IEEE Transactions on Information Forensics and Security;2023

5. Accountable Private Set Cardinality for Distributed Measurement;ACM Transactions on Privacy and Security;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3