SoK: Privacy-Preserving Computation Techniques for Deep Learning

Author:

Cabrero-Holgueras José1,Pastrana Sergio2

Affiliation:

1. CERN/Universidad Carlos III de Madrid

2. Universidad Carlos III de Madrid

Abstract

Abstract Deep Learning (DL) is a powerful solution for complex problems in many disciplines such as finance, medical research, or social sciences. Due to the high computational cost of DL algorithms, data scientists often rely upon Machine Learning as a Service (MLaaS) to outsource the computation onto third-party servers. However, outsourcing the computation raises privacy concerns when dealing with sensitive information, e.g., health or financial records. Also, privacy regulations like the European GDPR limit the collection, distribution, and use of such sensitive data. Recent advances in privacy-preserving computation techniques (i.e., Homomorphic Encryption and Secure Multiparty Computation) have enabled DL training and inference over protected data. However, these techniques are still immature and difficult to deploy in practical scenarios. In this work, we review the evolution of the adaptation of privacy-preserving computation techniques onto DL, to understand the gap between research proposals and practical applications. We highlight the relative advantages and disadvantages, considering aspects such as efficiency shortcomings, reproducibility issues due to the lack of standard tools and programming interfaces, or lack of integration with DL frameworks commonly used by the data science community.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards algorithms and models that we can trust: A theoretical perspective;Neurocomputing;2024-08

2. A TEE-Based Federated Privacy Protection Method: Proposal and Implementation;Applied Sciences;2024-04-22

3. When Evolutionary Computation Meets Privacy;IEEE Computational Intelligence Magazine;2024-02

4. Protecting Privacy in Digital Records: The Potential of Privacy-Enhancing Technologies;Journal on Computing and Cultural Heritage;2023-12-31

5. Recent Applications of Convolutional Neural Networks in Medical Data Analysis;Advances in Healthcare Information Systems and Administration;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3