Notum protects against myocardial infarction-induced heart dysfunction by alleviating cardiac fibrosis

Author:

Jin Tongzhu1,Ye Zhen2,Fang Ruonan1,Li Yue1,Su Wei1,Wang Qianqian1,Li Tianyu1,Shan Hongli13,Lu Yanjie13,Liang Haihai13

Affiliation:

1. Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , China

2. Department of Pharmacy, Suqian First Hospital , Suqian , China

3. Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences , Harbin , China

Abstract

Abstract Background and Objective Cardiac fibrosis is a pathological reparative process that follows myocardial infarctionand is associated with compromised cardiac systolic and reduced cardiac compliance. The Wnt signaling pathway is closely implicated in organ fibrosis, and Notum, a highly conserved secreted inhibitor, modulates Wnt signaling. The objective of this study was to explore the role and mechanism of Notum in cardiac fibrosis. Methods A mouse model of cardiac remodeling was established through left coronary artery ligation surgery, with the addition of Notum injection following myocardial infarction surgery. The protective effect of Notum on myocardial infarction was assessed by evaluating cardiac function, including survival rate, echocardiographic assessment, and cardiac contraction analyses. Inflammatory cell necrosis and infiltration were confirmed through H&E and Masson staining. The expression of fibrosis-related genes and β-catenin pathway markers was detected using Western blot quantificational RT-PCR (qRT-PCR). Additionally, EdU, wound healing, and immunofluorescence staining analyses were performed to detect the effect of Notum’s in transforming growth factor beta-1 (TGF-β1) induced myofibroblast transformation. Results The administration of Notum treatment resulted in enhanced survival rates, improved cardiac function, and decreased necrosis and infiltration of inflammatory cells in mice subjected to left coronary artery ligation. Furthermore, Notum effectively impeded the senescence of cardiac fibroblasts and hindered their pathological transformation into cardiac fibroblasts. Additionally, it significantly reduced collagen production and attenuated the activation of the Wnt/β-catenin pathway. Our preliminary investigations successfully demonstrated the therapeutic potential of Notum in both fibroblasts in vitro and in a mouse model of myocardial infarction-induced cardiac fibrosis in vivo. Conclusion Notum inhibition of the Wnt/β-catenin signaling pathway and cardiac fibroblast senescence ultimately hampers the onset of cardiac fibrosis. Our findings suggest that Notum could represent a new therapeutic strategy for the treatment of cardiac fibrosis.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3