Ontology–based access to temporal data with Ontop: A framework proposal

Author:

Güzel Kalayci Elem1,Brandt Sebastian2,Calvanese Diego1,Ryzhikov Vladislav3,Xiao Guohui1,Zakharyaschev Michael34

Affiliation:

1. KRDB Research Centre for Knowledge and Data , Free University of Bozen-Bolzano , Piazza Domenicani 3, 39100 Bolzano , Italy

2. Siemens CT, Otto-Hahn-Ring 6, 81739 München , Germany

3. Department of Computer Science and Information Systems, Birkbeck , University of London , Malet St., London WC1E 7HX , UK

4. National Research University Higher School of Economics , 3 Kochnovsky Proezd, 125319 , Moscow , Russia

Abstract

Abstract Predictive analysis gradually gains importance in industry. For instance, service engineers at Siemens diagnostic centres unveil hidden knowledge in huge amounts of historical sensor data and use it to improve the predictive systems analysing live data. Currently, the analysis is usually done using data-dependent rules that are specific to individual sensors and equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers. One solution to this problem is to employ ontology-based data access (OBDA), which provides a conceptual view of data via an ontology. However, classical OBDA systems do not support access to temporal data and reasoning over it. To address this issue, we propose a framework for temporal OBDA. In this framework, we use extended mapping languages to extract information about temporal events in the RDF format, classical ontology and rule languages to reflect static information, as well as a temporal rule language to describe events. We also propose a SPARQL-based query language for retrieving temporal information and, finally, an architecture of system implementation extending the state-of-the-art OBDA platform Ontop.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. Abiteboul, S., Hull, R. and Vianu, V. (1995). Foundations of Databases, Addison Wesley Publ. Co., Boston, MA.

2. Allen, J.F. (1983). Maintaining knowledge about temporal intervals, Communications of the ACM26(11): 832–843.

3. Alur, R. and Henzinger, T.A. (1993). Real-time logics: Complexity and expressiveness, Information and Computation104(1): 35–77.

4. Anicic, D., Fodor, P., Rudolph, S. and Stojanovic, N. (2011). EP-SPARQL: A unified language for event processing and stream reasoning, Proceedings of the 20th International World Wide Web Conference (WWW), Hyderabad, India, pp. 635–644.

5. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F. and Zakharyaschev, M. (2015a). First-order rewritability of temporal ontology-mediated queries, Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp. 2706–2712.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3