Utilizing Relevant RGB–D Data to Help Recognize RGB Images in the Target Domain

Author:

Gao Depeng1,Liu Jiafeng1,Wu Rui1,Cheng Dansong1,Fan Xiaopeng1,Tang Xianglong1

Affiliation:

1. School of Computer Science and Technology , Harbin Institute of Technology , No. 92 Xidazhi Street, Harbin , China

Abstract

Abstract With the advent of 3D cameras, getting depth information along with RGB images has been facilitated, which is helpful in various computer vision tasks. However, there are two challenges in using these RGB-D images to help recognize RGB images captured by conventional cameras: one is that the depth images are missing at the testing stage, the other is that the training and test data are drawn from different distributions as they are captured using different equipment. To jointly address the two challenges, we propose an asymmetrical transfer learning framework, wherein three classifiers are trained using the RGB and depth images in the source domain and RGB images in the target domain with a structural risk minimization criterion and regularization theory. A cross-modality co-regularizer is used to restrict the two-source classifier in a consistent manner to increase accuracy. Moreover, an L 2,1 norm cross-domain co-regularizer is used to magnify significant visual features and inhibit insignificant ones in the weight vectors of the two RGB classifiers. Thus, using the cross-modality and cross-domain co-regularizer, the knowledge of RGB-D images in the source domain is transferred to the target domain to improve the target classifier. The results of the experiment show that the proposed method is one of the most effective ones.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A single image deblurring approach based on a fractional order dark channel prior;International Journal of Applied Mathematics and Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3