Multilayered Autoscaling Performance Evaluation: Can Virtual Machines and Containers Co–Scale?

Author:

Podolskiy Vladimir1,Jindal Anshul1,Gerndt Michael1

Affiliation:

1. Chair of Computer Architecture and Parallel Systems , Technical University of Munich , Boltzmannstr. 3, 85748 Garching , Germany

Abstract

Abstract The wide adoption of cloud computing by businesses is due to several reasons, among which the elasticity of the cloud virtual infrastructure is the definite leader. Container technology allows increasing the flexibility of an application by adding another layer of virtualization. The containers can be dynamically created and terminated, and also moved from one host to another. A company can achieve a significant cost reduction and increase the manageability of its applications by allowing the running of containerized microservice applications in the cloud. Scaling for such solutions is conducted on both the virtual infrastructure layer and the container layer. Scaling on both layers needs to be synchronized so that, for example, the virtual machine is not terminated with containers still running on it. The synchronization between layers is enabled by multilayered cooperative scaling, implying that the autoscaling solution of the virtual infrastructure layers is aware of the decisions of the autoscaling solution on the container layer and vice versa. In this paper, we introduce the notion of cooperative multilayered scaling and the performance of multilayered autoscaling solutions evaluated using the approach implemented in ScaleX (previously known as Autoscaling Performance Measurement Tool, APMT). We provide the results of the experimental evaluation of multilayered autoscaling performance for the combination of virtual infrastructure autoscaling of AWS, Microsoft Azure and Google Compute Engine with pods horizontal autoscaling of Kubernetes by using ScaleX with four distinct load patterns. We also discuss the effect of the Docker container image size and its pulling policy on the scaling performance.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3