Puistu esimese rinde võrastiku alguse kõrguse hindamine lennukilidari mõõdistusandmete järgi / A simple model to estimate forest canopy base height from airborne lidar data

Author:

Arumäe Tauri12,Lang Mait13

Affiliation:

1. Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia

2. State Forest Management Centre, 10149, Toompuiestee 24, Tallinn

3. Tartu Observatory

Abstract

Abstract Airborne laser scanner (ALS) measurements from two test sites in Estonia were used to estimate forest canopy-base height (HVL). The ALS data was collected by Estonian Land Board using Leica ALS50-II scanner. The HVL was estimated by using mode value and standard deviation of the ALS pulse reflection position height distribution. The pulse reflections which had height less than 0.5 m over the estimated digital terrain model were excluded from the analysis. In situ measurements of canopy base height (HVA) were carried out in 20 mesotrophic Norway spruce and silver birch forest stands in Järvselja and in 45, mostly Scots pine dominant, mesotrophic forest stands in Aegviidu. Determination coefficients of linear regression between HVL and HVA for both test sites were over 0.8 and the residual standard errors of the models were less than two meters. The influence of forest understory vegetation to the estimation of HVL was tested by excluding the near-to-ground vegetation reflections which had height less than 1.5 m. The test results revealed no significant impact of forest understory to the HVL models. The cross validation showed that the HVL models were independent of test sites and tree species composition. The Järvselja data based HVL model had 1.3 m negative bias if applied to Aegviidu forests and the Aegviidu data based HVL model had 1.4 m positive bias if applied to Järvselja forests. In the Aegviidu test site, difference of HVL models of coniferous and deciduous stands was tested and the difference was found not to be significant

Publisher

Walter de Gruyter GmbH

Subject

Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3