Mathematical Modelling and Numerical Simulation of Mass Transfer During Deep-Fat Frying of Plantain (Musa paradisiacal AAB) Chips (ipekere)

Author:

Adeyanju James Abiodun1,Olajide John Oluranti1,Oke Emmanuel Olusola2,Adedeji Akinbode Adeyemi3

Affiliation:

1. Department of Food Engineering , Ladoke Akintola University of Technology , Ogbomoso , Oyo State , Nigeria

2. Department of Chemical Engineering , Michael Okpara University of Agriculture , Umudike - Abia State , Nigeria

3. Department of Biosystems and Agricultural Engineering , University of Kentucky , Lexington , KY, USA

Abstract

Abstract This study developed a mathematical model following the fundamental principles of mass transfer for the simulation of the oil and moisture content change during the Deep-Fat Frying of plantain (ipekere) chip. The explicit Finite Difference Technique (FDT) was used to conduct a numerical solution to the consequential governing equation (partial differential equation) that was used to describe the mass transfer rate during the process. Computer codes that were computed in MATLAB were used for the implementation of FDT at diverse frying conditions. Samples of the plantain were cut into portions of 2 mm thickness, and these sliced portions were fried at separate frying oil temperatures (170, 180 and 190°C) between 0.5 and 4 minutes. The experimental data and the predicted outcomes were compared for the validation of the model, and the juxtaposition revealed a plausible agreement. The predicted values and the experimental values of oil and moisture transfer models produced correlation coefficients that range from 0.96 to 0.99 and 0.94 to 0.99, respectively. The predicted outcomes could be utilized for the control and design of the DFF.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3