Experimental load test statistics for the selected IPS tools on low-performance IoT devices

Author:

Zitta Tomas1,Lucki Michal1,Vojtech Lukas1,Neruda Marek1,Mejzrova Lenka1

Affiliation:

1. Czech Technical University in Prague , Faculty of Electrical Engineering, Department of Telecommunication Engineering , Technická 2, 166 27 Prague 6 , Czech Republic

Abstract

Abstract The goal of this paper is to propose a testing procedure for selected intrusion prevention systems (IPS) in a realistic network traffic in terms of their suitability on a given hardware microcomputers for low-performance devices for internet of things (IoT). We perform an IPS research in terms of resource usage in order to establish a universal procedure of checking, whether a given microcomputer controlling IoT devices (often in overloaded state) can additionally burden the installation and start-up of IPS. The experiment is repeated on several boards under overload condition to determine the maximum data rate, above which transmission degrades. The presented testing method is an exemplary tool for IoT applications concerning the security of embedded devices with low performance.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decision Tree-Based Rule Derivation for Intrusion Detection in Safety-Critical Automotive Systems;2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP);2022-03

2. BL‐Hybrid: A graph‐theoretic approach to improving software‐defined networking‐based data center network performance;Transactions on Emerging Telecommunications Technologies;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3