Black silicon – correlation between microstructure and Raman scattering

Author:

Jurečka Stanislav1,Pinčík Emil2,Imamura Kentaro3,Matsumoto Taketoshi3,Kobayashi Hikaru3

Affiliation:

1. Institute of Aurel Stodola , University of Žilina , Liptovský Mikuláš , Slovakia

2. Institute of Physics SAS , Dúbravská cesta 9, 842 28 Bratislava , Slovakia

3. The Institute of Scientific and Industrial Research , Osaka University , CREST, Japan Science and Technology Agency, Ibaraki, Osaka 567-0047 , Japan

Abstract

Abstract Black silicon layers were formed on silicon substrate by the surface structure chemical transfer method and by anodic etching method. Properties of microstructure of formed layers were experimentally studied by the electron microscopy methods (TEM) and characterized by statistical, Fourier and multifractal methods. Theoretical structures with defined fractal properties and surface roughness were generated and their microstructure properties were evaluated. Obtained results were used for the explanation of the real structure development during the forming procedure. By using of this approach, we study the correlation of roughness and fractality with optical properties. Black silicon layers were also investigated by using of Raman scattering method. Optimized theoretical model describing the 1st order of black Si Raman scattering profile was constructed and used for evaluation of the biaxial tensile stress introduced during etching procedure.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3