Wind speed prediction research with EMD-BP based on Lorenz disturbance

Author:

Zhang Yagang12,Pan Guifang1,Zhang Chenhong1,Zhao Yuan1

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing , 102206 , China

2. Interdisciplinary Mathematics Institute , University of South Carolina , Columbia , SC 29208 , United States

Abstract

Abstract Wind power, as a new energy generation technology, has been applying widely and growing rapidly, which make it become the main force of renewable energy. However, wind speed sequence has its own character of the intermittent and uncertainty, which brings a great challenge to the safety and stability of the power grid, one of the valid ways solving the problem is improving the wind speed predicting accuracy. Therefore, given atmospheric disturbances, we firstly used empirical mode decomposition (EMD) to deal with the non-linear wind speed sequence, and combined with strong adaptive and self-learning ability of BP neural network, then, a wind speed prediction model, EMD-BP neural network based on Lorenz disturbance, was proposed. Finally, it was to made use of actual wind speed data to take a simulation experiment and explored the improvement effect of the preliminary forecasting sequence of wind speed influenced by Lorenz equation in the transient chaos and chaos. The results show that, the improved model weakened the random fluctuation of wind speed sequence, effectively corrected the wind speed sequences initial prediction values, and made a great improvement for the short-term wind speed prediction precision. This research work will help the power system dispatching department adjust the dispatching plan in time, formulate the wind farm control strategy reasonably, reduce the impact brought by wind power grid connection, increase the wind power penetration rate, and then promote the global energy power market innovation.

Publisher

Walter de Gruyter GmbH

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3