Application of GPU Parallel Computing for Acceleration of Finite Element Method Based 3D Reconstruction Algorithms in Electrical Capacitance Tomography

Author:

Kapusta Paweł1,Majchrowicz Michał1,Sankowski Dominik1,Banasiak Robert1

Affiliation:

1. Institute of Applied Computer Science, Lodz University of Technology, Poland

Abstract

Abstract With the increasing complexity and scale of industrial processes their visualization is becoming increasingly important. Especially popular are non-invasive methods, which do not interfere directly with the process. One of them is the 3D Electrical Capacitance Tomography. It possesses however a serious flaw - in order to obtain a fast and accurate visualization requires application of computationally intensive algorithms. Especially non-linear reconstruction using Finite Element Method is a multistage, complex numerical task, requiring many linear algebra transformations on very large data sets. Such process, using traditional CPUs can take, depending on the used meshes, up to several hours. Consequently it is necessary to develop new solutions utilizing GPGPU (General Purpose Computations on Graphics Processing Units) techniques to accelerate the reconstruction algorithm. With the developed hybrid parallel computing architecture, based on sparse matrices, it is possible to perform tomographic calculations much faster using GPU and CPU simultaneously, both with Nvidia CUDA and OpenCL.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3