Traffic Flow Variables Estimation: An Automated Procedure Based on Moving Observer Method. Potential Application for Autonomous Vehicles

Author:

Guerrieri Marco1,Parla Giuseppe2,Mauro Raffaele1

Affiliation:

1. DICAM, University of Trento , Italy

2. Polytechnic School , University of Palermo and ISMETT , Palermo , Italy

Abstract

Abstract The estimation of traffic flow variables (flow, space mean speed and density) plays a fundamental role in highways planning and designing, as well as in traffic control strategies. Moving Observer Method (MOM) allows traffic surveys in a road, or in a road network. This paper proposes a novel automated procedure, called MOM-AP based on Moving Observer Method and Digital Image Processing (DIP) Technique able to automatically detect (without human observers) and calculate flow q, space mean speed vs and density k in case of stationary and homogeneous traffic conditions. In order to evaluate how reliable is the MOM-AP, an experiment has been carried out in a segment of one two-lane single carriageway road, in Italy. 30 datasets for the segment have been collected (in total 30 round trips). A comparative analysis between MOM-AP and traditional MOM has been carried out. First results show that the current MOM-AP algorithms underestimate the local mean flow variable values of around 10%. Nowadays MOM-AP may be implemented in smartphone apps. Instead, in the near future, it is realistic expecting the increase in the use of automated procedures for calculating the traffic flow variables (based on the “moving observer method”), due to the amount of sensors and digital cameras employed in the new autonomous vehicles (AVs). Considering such technical advances, the MOM-AP is a feasible model for real-time traffic analyses of road networks.

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Reference29 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Theoretical Validation of the Moving Observer Method;IEEE Transactions on Intelligent Transportation Systems;2023-12

2. A Novel Concept of Traffic Data Collection and Utilization: Autonomous Vehicles as a Sensor;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. Vehicle Detection Approach Adjusting Road Curves to Estimate Local Traffic Density under Real Driving Conditions;Transportation Research Record: Journal of the Transportation Research Board;2022-09-30

4. Modelling of segment level travel time on urban roadway arterials using floating vehicle and GPS probe data;Scientific African;2022-03

5. A Theoretical Validation of the Moving Observer Methodology;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3