Automated Railway Signs Detection. Preliminary Results

Author:

Guerrieri Marco1,Parla Giuseppe1

Affiliation:

1. Polytechnic School , University of Palermo 90100 , Palermo , Italy

Abstract

Abstract Nowadays safety in railways is mostly achieved by automated system technologies such as ERTMS/ETCS. Nevertheless, on local railways (suburban and regional lines) several tasks still depend on the choices and actions of a human crew. With the aim to improve safety in such type of railways, this research proposes a system for the automatic detection and recognition of railway signs by means of the digital image processing technique. First field applications, carried out on the Italian railway network, show that the proposed system is very accurate (the percentage of correctly detected railway signs is about 97%), even at high train speeds.

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Reference20 articles.

1. 1. Bruno, L., Parla, G., Celauro, C. (2012) Improved Traffic Signal Detection and Classification via Image Processing Algorithms. Procedia - Social and Behavioral Sciences (53), 811–821. https://doi.org/10.1016/j.sbspro.2012.09.93010.1016/j.sbspro.2012.09.930

2. 2. De La Escalera, A., Armingol, J. M. A., Mata, M. (2003) Traffic sign recognition and analysis for intelligent vehicles. Image and vision computing, 21, 247–258. - https://doi.org/10.1016/S0262-8856(02)00156-710.1016/S0262-8856(02)00156-7

3. 3. Delfino, A., Galaverna, M. (2003) Mobile and fixed block: Carrying capacity analysis. Ingegneria Ferroviaria 6: 555-565.

4. 4. Directive 2004/49/EC, Commission Directive 2009/149/EC and Regulation (EC) No 91/2003.

5. 1. ERA. Railway Safety Performance in the European Union. Biennial Report. European Union Agency for railway, 2016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault detection of overhead contact systems based on multi-view Faster R-CNN;Journal of Intelligent & Fuzzy Systems;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3